MULTI-VALUED MONOTONE NONLINEAR MAPPINGS AND DUALITY MAPPINGS IN BANACH SPACES

BY FELIX E. BROWDER(1)

Introduction. Let X be a reflexive real Banach space, X^* its conjugate space, (w, u) the pairing between w in X^* and u in X. We consider multi-valued mappings T of X into X^* (i.e., mappings in the ordinary sense of X into 2^{X^*}) which are monotone, i.e., if $v \in T(u)$, $v_1 \in T(u_1)$ for u and u_1 in X, then

$$(v-v_1, u-u_1) \ge 0.$$

It is our object in the present paper to generalize to the multi-valued case the results obtained in a number of recent papers by the author and G. J. Minty for single-valued mappings T (cf. [2]-[14]). The first results for multi-valued mappings for X a Hilbert space have been obtained in an unpublished paper of Minty [15]. The methods of [15] are not directly extendable to more general spaces, but our discussion of the finite-dimensional case (Lemma 2.1) has been very much influenced by the manuscript of [15] which Minty has recently transmitted to the author. (The basic result of [15] is stated at the end of $\S 2$ below.)

Our results for general multi-valued monotone mappings have an interesting specific application given in §3 below to the generalization of a theorem of Beurling and Livingston [1] on duality mappings in Banach spaces. In a previous paper [12], we showed that for strictly convex reflexive spaces, this theorem could be obtained from results on single-valued monotone mappings. In §3 below we give a generalization of this theorem to general reflexive Banach spaces which runs as follows: Let X be a reflexive Banach space, $\phi(r)$ a non-negative non-decreasing function on R^1 with $\phi(0) = 0$. The duality map T of X with respect to ϕ is defined by

$$T(u) = \begin{cases} v | v \in X^*, & ||v|| = \phi(||u||), \\ (v, u) = ||v|| \cdot ||u||. \end{cases}$$

Received by the editors February 21, 1964.

⁽¹⁾ The preparation of this paper was partially supported by NSF grants 19751 and GP-2283 the Sloan Foundation, and the Army Research Office (Durham) through grant DA-ARO(D)-31-124-G455.

Let Y be a closed subspace of X, Y^{\perp} its annihilator in X^* , v_0 and w_0 arbitrary elements of X and X^* , respectively. Then

$$T(Y+v_0)\cap (Y^\perp+w_0)$$

is nonempty.

§1 is devoted to the study of maximal monotonic mappings and of a very weak continuity property for multi-valued mappings which we have called *vague continuity* and which plays a key role in our discussion. §2 contains the proof of the basic results on general multi-valued monotonic mappings. §3 contains the discussion of duality mappings.

1. Let X be a reflexive Banach space over the reals, X^* its conjugate space. We denote the pairing between w in X^* and u in X by (w,u). We denote by $X \times X^*$ the product space of X and X^* whose elements will be written as [u,w] and with norm

$$||[u,w]|| = \{||u||_X^2 + ||w||_{X^*}^2\}^{1/2}.$$

We consider multi-valued mappings T of X into X^* , where T assigns to each u in X, a subset T(u) (possibly empty) of X^* .

To make our discussion of multi-valued mappings more intuitive by tying the formalism of our arguments closer to the single-valued case, we introduce the following notational convention:

Convention. If V is a subset of X^* , u an element of X, then (V, u) will denote the set $\{(v, u) \mid v \in V\}$. Similarly if V and W are subsets of X^* , then (V - W, u) will denote the set $\{(v - w, u) \mid v \in V, w \in W\}$. If c is a real number, and R_0 is a set of real numbers, $R_0 \ge c$ (or $R_0 \le c$) will denote the sets of inequalities $r \ge c$ for $r \in R_0$ (or $r \le c$ for $r \in R_0$). If a set V appears several times in a single equation or inequality, the equation or inequality is assumed to hold for each v in V, with the same v chosen at all points of occurrence of V in the given equation or inequality.

DEFINITION 1.1. Let T be a (possibly) multi-valued map from X to X^* . Then T is said to be monotone if

$$(T(u) - T(u_1), u - u_1) \ge 0$$

for all u and u_1 in X.

DEFINITION 1.2. The graph G(T) is the subset of $X \times X^*$ given by

$$G(T) = \{ [u, w] | w \in T(u), u \in X \}.$$

We say that $T \subseteq T_1$ if $G(T) \subseteq G(T_1)$.

DEFINITION 1.3. T is said to be maximal monotone if T is monotone and if for every monotone T_1 such that $T \subseteq T_1$, we have $T = T_1$.

If S is a subset of X or X^* , K(S) will denote its convex closure, i.e., the smallest

closed convex set containing S. S is said to surround 0 if every ray $\{tw \mid t > 0\}$ for $w \neq 0$ intersects S.

Lemma 1.1. Let T be a maximal monotone multi-valued map from X to X^* . Then:

- (a) For every u in X, T(u) is a closed convex subset of X^* .
- (b) If $\{u_k\}$ and $\{v_k\}$ are sequences in X and X^* , respectively, such that $u_k \to u_0$ strongly in $X, v_k \in T(u_k)$, and $v_k \to v_0$ weakly in X^* , then $v_0 \in T(u_0)$.

Proof of Lemma 1.1. Proof of (a). For u, u_1 in X and $v, v_0 \in T(u), v_1 \in T(u_1)$, we have

$$(v - v_1, u - u_1) \ge 0,$$

 $(v_0 - v_1, u - u_1) \ge 0.$

If $0 \le t \le 1$, $v_t = tv + (1-t)v_0$, we have

$$(v_t - v_1, u - u_1) = t(v - v_1, u - u_1) + (1 - t)(v_0 - v_1, u - u_1) \ge 0.$$

If we add v_t to T(u) therefore to obtain a larger mapping T_1 , it follows that T_1 is monotone. Since T is maximal monotone, it follows that $v_t \in T(u)$, i.e., T(u) is convex. Similarly T(u) is closed.

Proof of (b). Let u be any element of X, v any element of T(u). For every k, we have

$$(v_k-v, u_k-u) \ge 0.$$

Since $u_k - u$ converges strongly to $u_0 - u$ while $v_k - v$ converges weakly to $v_0 - v$, we have

$$(v_k-v, u_k-u) \xrightarrow[k\to\infty]{} (v_0-v, u_0-u).$$

Hence

$$(v_0 - v, u_0 - u) \ge 0$$

for every u in X, $v \in T(u)$. By the maximal monotonicity of T, it follows that $v_0 \in T(u)$. Q.E.D.

DEFINITION 1.4. If T is a multi-valued transformation from X to X^* , its domain D(T) is defined to be the set of u in X for which $T(u) \neq \emptyset$.

DEFINITION 1.5. If T is a multi-valued mapping from X to X^* , T is said to be vaguely continuous if D(T) is a dense linear subset of X and the following condition is satisfied.

For each pair u_0 and u_1 of D(T), there exists a sequence $\{t_n\}$ of positive real numbers with $t_n \to 0$ as $n \to +\infty$ and an element v_1 of $K(T(u_0))$ such that if $u_n = t_n u_1 + (1 - t_n) u_0$, there exist elements $v_n \in K(T(u_n))$ such that $v_n \to v_1$ weakly in X^* .

If T is a single-valued mapping, vague continuity of T is a weakening of the condition of hemi-continuity of T as introduced by the author in [5] (i.e., T continuous from each segment in D(T) to the weak topology of X^*),

THEOREM 1.1. Let T be a maximal monotone mapping of X into X^* such that D(T) is a dense linear subset of X and for each closed line segment S_0 in D(T), there is a bounded set S_1 in X^* such that $T(u) \cap S_1 \neq \emptyset$ for $u \in S_0$.

Then T is vaguely continuous and T(u) is a closed convex set for every u in D(T).

Proof of Theorem 1.1. We know from the maximal monotonicity of T and part (a) of Lemma 1.1 that T(u) is a closed convex set in X^* for every u in D(T). It follows from the hypotheses of our theorem that D(T) is a dense linear subset of X. We need only to show that the condition of Definition 1.5 is satisfied.

Let S_0 be the closed line segment $\{u_t = tu_1 + (1-t)u_0 \mid 0 \le t \le 1\}$ in D(T). By hypothesis, there exists a constant M depending on S_0 such that for each u_t in S, we may find v_t in $T(u_t)$ with $\|v_t\| \le M$. By the weak compactness of the closed ball in the reflexive Banach space X^* , we may choose a sequence $\{t_n\}$ with $t_n > 0$, $t_n \to 0$ as $n \to +\infty$ and $v_{t_n} \to v_1$ weakly in X^* as $n \to +\infty$. However, $u_{t_n} \to u_0$ strongly in X. Since T is maximal monotone, it follows from Lemma 1.1(b) that $v_1 \in T(u_0)$. Q.E.D.

We have a converse for Theorem 1.1, namely:

THEOREM 1.2. Let T be a multi-valued mapping of X into X^* for which all of the following conditions are satisfied.

- (a) T is monotone.
- (b) D(T) = X and T(u) is a closed convex set for each u in X.
- (c) T is vaguely continuous.

Then T is maximal monotone.

Proof of Theorem 1.2. Suppose $T \subseteq T_1$, where T_1 is monotone and $v_0 \in T_1(u_0)$. We must show that $v_0 \in T(u_0)$. By the monotonicity of T_1 , we know that for every u in X and $v \in T(u)$, we have

$$(v - v_0, u - u_0) \ge 0.$$

Suppose v_0 does not lie in $T(u_0)$. Since $T(u_0)$ is closed and convex there exists w in X such that

$$(v_0, w) > (T(u_0), w)$$
.

For real t > 0, set $u_t = u_0 + tw$. For any v in $T(u_t)$, we have

$$t(v-v_0,w)\geq 0$$
,

i.e.,

$$(v-v_0,w) \ge 0, \qquad v \in T(u_t),$$

or

$$(T(u_t)-v_0,w)\geq 0.$$

Hence

$$(T(u_t) - T(u_0), w) \ge (v_0 - T(u_0), w)$$

for all t > 0. Hence, choosing $\{v_k\}$ for the segment $\{u_t = u_0 + tw \mid 0 \le t \le 1\}$ we have $v_k \in T(u_k)$, where $u_k = u_0 + t_k w$ $(t_k \to 0)$ with $v_k \to v_1$ weakly in X^* for some v_1 in $T(u_0)$. Hence

$$(v_k - v_1, w) \ge (v_0 - v_1, w),$$

which implies that

$$0 \ge (v_0 - v_1, w) \ge (v_0 - T(u_0), w) > 0$$

yielding a contradiction. Q.E.D.

LEMMA 1.2. If T is a maximal monotone multi-valued mapping from X to X^* and if for sequences $\{u_k\}$ and $\{v_k\}$ from X and X^* , respectively, we have

$$v_k \in T(u_k)$$

and

$$u \rightarrow g_0$$
 weakly in X ,

$$v_k \rightarrow v_0$$
 strongly in X^* ,

then $v_0 \in T(u_0)$.

Proof of Lemma 1.2. For u in $X, v \in T(u)$, we have for every k

$$(v_k-v,u_k-u)\geq 0.$$

Since $u_k - u$ converges weakly to $u_0 - u$ and $v_k - v$ converges strongly to $v_0 - v$, we have

$$(v_k - v, u_k - u) \rightarrow (v_0 - v, u_0 - u).$$

Hence,

$$(v_0-v,u_0-u)\geq 0,$$

i.e.,

$$(v_0 - T(u), u_0 - u) \ge 0$$

for all u in X. By the maximal monotonicity of T, it follows that $v_0 \in T(u_0)$. Q.E.D.

2. We begin the study of the ranges of monotone multi-valued mappings with the finite-dimensional case.

LEMMA 2.1. Let F be a finite-dimensional Banach space, F^* its conjugate space, T a multi-valued mapping of F into F^* . Suppose that T is maximal

monotone and that there exists a bounded subset S of F surrounding 0 such that for u in S,

$$(T(u),u)\geq 0$$
.

Then there exists u_0 in K(S) such that $0 \in T(u_0)$.

Proof of Lemma 2.1. Since the hypotheses and conclusions are invariant under a change to an equivalent norm and since F is of finite dimension, we may assume without loss of generality that F is a Hilbert space and $F^* = F$.

We adopt a device used by Minty [15] under different hypotheses in infinite-dimensional Hilbert spaces. For each positive integer n, let T_n be the mapping from X to X^* whose graph is given by

$$G(T_n) = \left\{ \left[u + \frac{1}{n}v, v + \frac{1}{n}u \right] \mid [u, v] \in G(T) \right\}.$$

We consider the properties of the mappings T_n . We begin by establishing the inequality:

$$(2.1) (w - w_1, x - x_1) \ge \frac{1}{4n} \{ \| w - w_1 \|^2 + \| x - x_1 \|^2 \}$$

for all [x, w] and $[x_1, w_1]$ in $G(T_n)$. By the definition of $G(T_n)$, there exist [u, v] and $[u_1, v_1]$ in G(T) such that

$$x = u + \frac{1}{n}v,$$
 $w = v + \frac{1}{n}u,$
 $x_1 = u_1 + \frac{1}{n}v_1,$ $w_1 = v_1 + \frac{1}{n}u_1.$

Hence,

$$(w - w_1, x - x_1) = \left((u - u_1) + \frac{1}{n} (v - v_1), (v - v_1) + \frac{1}{n} (u - u_1) \right)$$

$$\geq \frac{1}{n} \{ \| u - u_1 \|^2 + \| v - v_1 \|^2 \}$$

On the other hand,

$$||x - x_1|| \le ||u - u_1|| + ||v - v_1||,$$

 $||w - w_1|| \le ||u - u_1|| + ||v - v_1||,$

so that

$$||x - x_1||^2 + ||w - w_1||^2 \le 4\{||u - u_1||^2 + ||v - v_1||^2\}$$

and

$$(w - w_1, x - x_1) \ge \frac{1}{4n} \{ \|x - x_1\|^2 + \|w - w_1\|^2 \}.$$

As a corollary of the inequality (2.1), we see that if $x = x_1$, then $w = w_1$ and conversely so that T_n is a one-to-one mapping with

$$\frac{1}{4n} \| x - x_1 \| \le \| T_n x - T_n x_1 \| \le 4n \| x - x_1 \|.$$

If T is maximal monotone, the transformation T^* with graph

$$G(T^{\#}) = \left\{ \left[u, \frac{v}{n} \right] \middle| \left[u, v \right] \in G(T) \right\}$$

is also maximal monotone. Applying Lemma 2 of Minty [13], we see that the set $\{u+v/n \mid [u,v] \in G(T)\}$ is the whole of F. Hence each T_n is defined on all of X and satisfies the inequality

$$(T_n x - T_n x_1, x - x_1) \ge \frac{1}{4n} \|x - x_1\|^2.$$

Hence by [13], each T_n maps F one-to-one onto F.

For each n, let x_n be the unique solution of $T_n x_n = 0$. Choose $[u_n, v_n] \in G(T)$ such that

$$u_n + \frac{1}{n}v_n = x_n,$$

$$v_n + \frac{1}{n}u_n = 0.$$

We assert that $u_n \in K(S)$. Indeed for u not in K(S), we have $u = \rho u_0$, where $\rho > 1$, $u_0 \in S$ (since S surrounds the origin). Since

$$(T(u) - T(u_0), u - u_0) \ge 0$$

we have for $v \in T(u_0)$,

$$\frac{(\rho-1)}{\rho}(T(u),u) \geq (\rho-1)(Tu_0,u_0) \geq 0,$$

i.e., for $v \in T(u)$, $(v, u) \ge 0$. For such u and v

$$\left(v+\frac{1}{n}\ u,v\right) \geq \|v\|^2,$$

$$\left(v+\frac{1}{n}u,u\right) \geq \frac{1}{n}\|u\|^2$$

so that if v + (1/n)u = 0, we have u = 0, v = 0, i.e., $u \in K(S)$, which is a contradiction. Hence all the elements u_n lie in K(S).

Since K(S) is bounded, there exists a constant M such that $||u_n|| \le M$ for all n. Hence

$$||v_n|| = ||\frac{1}{n}u_n|| \leq \frac{M}{n}$$

so that $v_n \to 0$ as $n \to \infty$. We may choose a subsequence $\{u_{n_j}\}$ so that $u_{n_j} \to u_0$ in F as $j \to +\infty$. By Lemma 2.1, however, it follows that $0 \in T(u_0)$. Q.E.D.

LEMMA 2.2. Let T be a multi-valued mapping of X into X^* such that

- (a) T is monotone.
- (b) T is vaguely continuous.
- (c) T(u) is a bounded closed convex set for each u.

Let Y be a closed subspace of X such that $Y \subset D(T)$. Let j be the injection mapping of Y into X, j* the projection map of X* onto Y*. Let T_1 be the multivalued mapping of Y into Y* given by $T_1(u) = j*T(ju)$ for u in Y.

Then T_1 is monotone, $D(T_1) = Y$, and T_1 satisfies conditions (a), (b), and (c). In particular, T_1 is maximal monotone.

Proof of Lemma 2.2. For each u in Y, $T(u) \neq \emptyset$ implies that $T_1(u) \neq \emptyset$. Hence $D(T_1) = Y$.

For u, u_1 in Y

$$(T_1(u) - T_1(u_1), u - u_1) = (T(u) - T(u), u - u_1) \ge 0$$

so that T_1 is monotone.

Since j^* is weakly continuous, if $v_k \in T(u_k)$ and $v_k \to v_1$ weakly in X^* for $v_1 \in T(u_0)$, then $j^*v_k \in T_1(u_k)$, $j^*v_1 \in T_1(u_0)$, and $j^*v_k \to j^*v_1$ weakly in Y^* . Hence T_1 is vaguely continuous.

Since j^* is linear and T(u) is convex for each $u, j^*T(u) = T_1(u)$ is convex for each u in Y. Since T(u) is a bounded closed convex set in the reflexive space X^* , it is weakly compact. Since j^* is weakly continuous, $j^*T(u) = T_1(u)$ is weakly compact and hence closed. Thus we have completed the verification of properties (a), (b), and (c) for the mapping T_1 .

Finally the maximal monotonicity of T_1 follows from (a), (b), and (c) and Theorem 1.2. Q.E.D.

THEOREM 2.1. Let T be a multi-valued mapping of X into X^* such that T(u) is bounded for each u, D(T) is a linear subset of X, and for each closed line segment S_0 in D(T), there exists a bounded set S_1 in X^* (possibly depending on S_0) such that $T(u) \cap S_1 \neq \emptyset$ for $u \in S_0$. Suppose further that

- (i) T is maximal monotone.
- (ii) There exists a bounded subset S of X surrounding 0 such that

$$(T(u), u) \ge 0$$

Then there exists u_0 in K(S) such that $0 \in T(u_0)$.

Proof of Theorem 2.1. Since T is maximal monotone and a bounded set S_1 exists for each closed line segment S_0 such that $T(u) \cap S_1 \neq \emptyset$ for $u \in S_0$, it follows from Theorem 1.1 that T is vaguely continuous, and T(u) is a bounded closed convex subset of X^* for each u in D(T).

Let F be a finite-dimensional subspace of D(T). Let j_F be the injection mapping of F into X, j_F^* the dual map projecting X^* onto F^* . We form the mapping $T_F: F \to F^*$ by setting $T_F u = j_F^* (T_F(j_F u)) \ (u \in F)$. Then by Lemma 2.2, T_F is vaguely continuous, $T_F(u)$ is a closed convex subset of F^* for every u in F, $D(T_F) = F$, and T_F is a monotone multi-valued mapping of F into F^* . Hence by Theorem 1.2, T_F is a maximal monotone mapping of F into F^* .

Let $S_F = S \cap F$. Then $S_F \subset K(S_F) \subset K(S)$, and S_F surrounds the origin in F. For u in S_F ,

$$(T_F(u), u) = (j_F^*T(u), u) = (T(u), u) \ge 0.$$

Hence T_F satisfies the hypotheses of Lemma 2.1 and there exists u_F in $K(S_F) \subset K(S) \cap F$ such that $0 \in T_F(u_F)$.

For any u in F, we have, however,

$$(T_F(u_F)-T_F(u),u_F-u)\geq 0,$$

i.e.,

$$(T(u), u - u_F) \ge 0.$$

Hence, the set

$$V_F = \{v \mid v \in K(S), (T(u), u - v) \ge 0\}$$
 for all $u \in F$

is a nonempty weakly closed convex subset of the weakly compact set K(S) in X. Since the family of such sets is closed under finite intersections, it follows that the set

$$\bigcap_{F} V_{F} \neq \varnothing.$$

If u_0 lies in $\bigcap_F V_F$, however, u_0 lies in K(S), and

$$(T(u), u - u_0) \geq 0$$

for all $u \in D(T)$. Hence by the maximal monotonicity of $T_0 \in T(u_0)$. Q.E.D.

THEOREM 2.2. Let T be a multi-valued mapping of X into X^* such that D(T) = X, T is monotone and vaguely continuous, and T(u) is a bounded closed convex set for each u. Suppose that there exists a bounded set S surrounding 0 in X such that $(T(u), u) \ge 0$ for u in S.

Then there exists u_0 in K(S) such that $0 \in T(u_0)$.

Proof of Theorem 2.2. This is the same as that of Theorem 2.1 except that the vague continuity of T is given to us by hypothesis and does not need to be deduced from maximal monotonicity and the existence of sets S_1 as in Theorem 2.1.

THEOREM 2.3. Let T be a monotone multi-valued mapping of X into X^* Y a closed subspace of X, Y^{\perp} its annihilator in X^* . Suppose that $Y \subset D(T)$ and that there exists a subset S surrounding 0 in Y such that $(T(u), u) \ge 0$ for u in S. Suppose also that one of the two following conditions holds:

- (A) T is maximal monotone. T(u) is a bounded set for each u, and for each closed segment S_0 in X, there exists a bounded set S_1 in X^* such that $T(u) \cap S_1 \neq \emptyset$.
- (B) T is vaguely continuous and T(u) is a bounded closed convex subset of X^* for each u.

Then there exists u_0 in $K(S) \subset Y$ such that $T(u_0) \cap Y^{\perp} \neq \emptyset$.

Proof of Theorem 2.3. If j is the injection mapping of Y into X, j^* the projection mapping of X^* on Y^* , we set $T_1(u) = j^*(T(u))$. Then $T(u_0) \cap Y^{\perp} \neq \emptyset$ if and only if $0 \in T_1(u)$. If (A) holds, T_1 satisfies the hypotheses of Theorem 2.1, while if (B) holds, T_1 satisfies the hypotheses of Theorem 2.2. Hence our conclusion follows. Q.E.D.

THEOREM 2.4. Let T be a monotone multi-valued mapping of X into X^* , Y a closed subspace of X with $Y \subset D(T)$, Y^{\perp} the annihilator of Y in X^* . Suppose that T satisfies either of the conditions (A) and (B) of Theorem 2.3 and that there exists a continuous real-valued function on R^1 with $c(r) \to +\infty$ as $r \to +\infty$ such that

$$(T(u), u) \ge c(||u||) \{||u|| + ||T(u)||\}$$

for $u \in Y$.

Then for each v_0 in X, w_0 in X^* ,

$$T(Y+v_0)\cap(w_0+Y^{\perp})\neq\varnothing$$
.

Proof of Theorem 2.4. We form the mapping $T^{\#}$ of X into X^{*} by setting

$$T^{\#}(u) = T(u_0 + v_0) - w_0.$$

Then T^* satisfies the hypotheses of Theorem 2.3 with respect to Y since for ||u|| sufficiently large

$$(T(u+v_0)-w_0,u) = (T(u+v_0),u+v_0)-(w_0,u)-(T(u+v_0),v_0)$$

$$\geq c(\|u+v_0\|)\{\|u+v_0\|+\|T(u+v_0)\|\}-\|w_0\|\cdot\|u\|$$

$$-\|v_0\|\cdot\|T(u+v_0)\|\geq 0. \quad \text{Q.E.D.}$$

It is interesting to compare Theorem 2.3 with the result obtained by Minty in [15]. In our notation, this is the following:

THEOREM (MINTY). Let H be a Hilbert space, T a multi-valued mapping of H into H, Y a closed subspace of H. Suppose that T is maximal monotone and satisfies all of the following conditions:

- (i) $(T(u), u) \ge -c$ for some c > 0 and all u in H.
- (ii) There exists a bounded set C surrounding 0 in H such that for every u in C, there exists $v \in T(u)$ such that

$$(v,u) \geq 0$$
.

(iii) There exists a bounded set D in H surrounding 0 such that for each $v \in D$, there exists u in H such that $v \in T(u)$ and

$$(v,u)\geq 0$$
.

Then $T(X) \cap Y^{\perp} \neq \emptyset$.

To clarify the relation of this result to Theorem 2.3, we note that by the monotonicity of T, the condition (ii) of Minty's theorem is equivalent to the stronger condition:

(ii)' $C \subset D(T)$ and $(Tu), u \ge 0$ for $u \in C$.

Indeed if k > 1 is fixed and $u \in C$, we have from condition (ii):

$$0 \le (T(ku) - v, ku - u) = (k-1) \left\{ \frac{1}{k} (T(ku), ku) - (v, u) \right\}.$$

Hence if $u_1 = ku \in kC$, $(T(u_1), u_1) \ge 0$.

Theorem 2.4 is thus a generalization of Minty's theorem to reflexive Banach spaces with hypotheses (i) and (iii) dropped and with the additional hypotheses that T(u) is bounded for each u and that for each line segment S_0 , there exists a bounded set S_1 intersecting T(u) for all u in S_0 ,

3. Let X be a reflexive Banach space as before, X^* its conjugate space, ϕ a continuous nondecreasing non-negative function of r in R^1 with $\phi(0) = 0$, $\phi(r) \to +\infty$ as $r \to +\infty$.

DEFINITION. If $u \neq 0$ is an element of X, v in X^* is said to be a dual element to u with respect to the gauge function ϕ if

$$(v,u) = ||v|| \cdot ||u||,$$

$$||v|| = \phi(||u||).$$

DEFINITION. The duality map T of X into X^* (with respect to the gauge function ϕ) is given by T(0) = 0 and for $u \neq 0$,

$$T(u) = \{v \mid v \text{ is dual to } u\}.$$

LEMMA 3.1. If X is a reflexive Banach space, ϕ a continuous non-negative nondecreasing function on R^1 with $\phi(0) = 0$, then the duality map T of X into X^* with respect to ϕ is a multi-valued maximal monotone mapping of X into X^* with D(T) = X and

- (a) T is vaguely continuous.
- (b) T(u) is a bounded closed convex subset of X^* for each u in X.
- (c) For all u in X

$$(T(u), u) \ge c(||u||) \{||u|| + ||Tu||\},$$

where

$$c(r) = \min \left\{ \frac{1}{2}r, \ \frac{1}{2}\phi(r) \right\}.$$

Proof of Lemma 3.1. The maximal monotonicity of T will follow if we prove that T is monotone, D(T) = X, and (a), (b), and (c) above are valid. D(T) = X by the Hahn-Banach theorem. If $u, u_1 \in X$ and $v \in T(u)$, $v_1 \in T(u_1)$, then

$$(v-v_1, u-u_1) = ||v|| \cdot ||u|| + ||v_1|| \cdot ||u_1|| - (v, u_1) - (v_1, u)$$

$$\ge ||v|| \cdot ||u|| + ||v_1|| \cdot ||u_1|| - ||v|| \cdot ||u_1|| - ||v_1|| \cdot ||u||$$

$$= (||v|| - ||v_1||)(||u|| - ||u_1||)$$

$$= (\phi(||u||) - \phi(||u_1||))(||u|| - ||u_1||) \ge 0,$$

since ϕ is nondecreasing. Hence T is monotone.

Proof of (a). Let $\{u_k\}$ be a sequence converging strongly to $u_0, v_k \in T(u_k)$. Then $\|v_k\| = \phi(\|u_k\|) \leq M$, so that by extracting a subsequence, we can assume that $v_k \to v_1$ weakly in X^* . Since $u_k \to u_0$ strongly, we have

 $||v_k|| \cdot ||u_k|| = (v_k, u_k) \to (v_1, u_0)$ $||v_1|| \le \liminf ||v_k||,$ $||u_0|| = \lim ||u_k||.$

Hence

$$||v_1|| \cdot ||u_0|| \le (v_1, u_0) \le ||v_1|| \cdot ||u_0||.$$

Thus

while

$$(v_1, u_0) = ||v_1|| \cdot ||u_0||.$$

Moreover

$$(v_1, u_0) = \lim (v_k, u_k) = \lim \phi(\|u_k\|) \|u_k\| = \phi(\|u_0\|) \|u_0\|$$

so that

$$||v_1|| = \phi(||u_0||).$$

Thus $v_1 \in T(u_0)$.

Proof of (b). Obviously T(u) is bounded and closed. Suppose $v, v_1 \in T(u)$ Then for $0 \le t \le 1$,

$$(tv + (1 - t)v_1, u) = t(v, u) + (1 - t)(v_1, u)$$

$$= t\phi(\|u\|) \|u\| + (1 - t)\phi(\|u\|) \|u\|$$

$$= \phi(\|u\|) \|u\|.$$

However, if $v_t = tv + (1 - t)v_1$, we have

$$||v_t|| \le t ||v|| + (1-t) ||v_1|| = \phi(||u||).$$

Hence

$$(v_t, u) = \phi(||u||)||u|| \ge ||v_t|| ||u||$$

and since

$$(v_t, u) \leq \|v_t\| \cdot \|u\|,$$

we have $||v_t|| = \phi(||u||)$ and $v_t \in T(u)$. Hence T(u) is convex. Q.E.D. **Proof of (c).** For $u \in X$

$$(Tu,u) = \phi(||u||) ||u|| = \frac{1}{2} ||T(u)|| \cdot ||u|| + \frac{1}{2} \phi(||u||) ||u||$$

$$\geq c(||u||) \{||u|| + ||T(u)||\}. \quad \text{Q.E.D.}$$

THEOREM 3.1. Let X be a reflexive Banach space, Y a closed subspace of X, X^* the conjugate space of X, Y^{\perp} the annihilator of Y in X^* . Let T be a duality map of X into X^* . If $v_0 \in X, w_0 \in X^*$, then the set

$$T(Y+v_0)\cap (Y^\perp+w_0)\neq\varnothing$$
.

Proof of Theorem 3.1. By Lemma 3.1, T satisfies the hypotheses of Theorem 2.4 and our conclusion follows. Q.E.D.

BIBLIOGRAPHY

- 1. A. Beurling and A.E. Livingston, A theorem on duality mappings in Banach spaces, Ark Mat. 4 (1962), 405-411.
- 2. F. E. Browder, Solvability of non-linear functional equations, Duke Math. J. 30 (1963), 557-566.
- 3. ——, Variational boundary value problems for quasi-linear elliptic equations of arbitrary order, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 31-37.
- 4. ——, Variational boundary value problems for quasi-linear elliptic equations. II, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 592-598.
- 5. —, Variational boundary value problems for quasi-linear elliptic equations. III, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 794-798.
- 6. ——, Non-linear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874.

- 7. —, Non-linear parabolic boundary value problems of arbitrary order, Bull. Amer. Math. Soc. 69 (1963), 858-861.
- 8. ——, Strongly non-linear parabolic boundary value problems, Amer. J. Math. 86 (1964), 339-357.
- 9. —, Nonlinear elliptic boundary problems, II Trans. Amer. Math. Soc. 117 (1965), 530-550.
 - ---, Nonlinear elliptic problems. II, Bull. Amer. Math. Soc. 70 (1964), 299-302.

 - 11. ——, Non-linear equations of evolution Ann. of Math. 80 (1964), 485-523.

 12. ——, On a theorem of Beurling and Livingston, Canad. J. Math. 17 (1965).
- 13. G. J. Minty, Monotone (non-linear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.
- 14. —, On a "monotonicity" method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041.
 - 15. ——, Unpublished paper on maximal monotone sets for Hilbert spaces.

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY University of Chicago, CHICAGO, ILLINOIS